

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Falcon

Falcon: a set of tools for fast aligning long reads for consensus and assembly

The Falcon tool kit is a set of simple code collection which I use for studying
efficient assembly algorithm for haploid and diploid genomes. It has some back-end
code implemented in C for speed and some simple front-end written in Python for
convenience.

Please take a look at the readme.md file inside the examples directory. It shows
how to do assembly using HBAR-DTK + Falcon on Amazon EC2 with a StarCluster
setup . If any one knows anything comparable to StarCluster for Google Compute
Engine, please let me know. I can build a VM there too.

FILES

Here is a brief description of the files in the package

Several C files for implementing sequence matching, alignment and consensus:

kmer_lookup.c # kmer match code for quickly identify potential hits
DW_banded.c # function for detailed sequence alignment
 # It is based on Eugene Myers' Paper
 # "AnO(ND) difference algorithm and its variations", 1986,
 # http://dx.doi.org/10.1007/BF01840446
falcon.c # functions for generating consensus sequences for a set of multiple sequence alginment
common.h # header file for common declaration

A python wrapper library using Python's ctypes to call the C functions: falcon_kit.py

Some python scripts for (1) overlapping reads (2) generation consensus and (3) generate
assembly contigs:

falcon_overlap.py # an overlapper
falcon_wrap.py # generate consensus from a group of reads
get_rdata.py # a utility for preparing data for falcon_wrap.py
falcon_asm.py # take the overlapping information and the sequence to generate assembled contig
falcon_fixasm.py # a script analyzing the assembly graph and break contigs on potential mis-assembly points
remove_dup_ctg.py # a utility code to remove duplication contigs in the assembly results

INSTALLATION

You need to install pbcore and networkx first. You might want to install
the HBAR-DTK if you want to assemble genomes from raw PacBio data.

On a Linux box, you should be able to use the standard python setup.py install to compile the C code and install python package. There is no standard
way to install the shared objects from the C code inside a python package, so I
did some hack to make it work. It might have some unexpected behavior. You can
simply install the .so files in a path where the operation system can find
(e.g. setting the environment variable LD_LIBRARY_PATH), and remove all
prefix in Python ctypes CDDL function calls.

EXAMPLES

Example for generating pre-assembled reads:

python get_rdata.py queries.fofn targets.fofn m4.fofn 72 0 16 8 64 50 50 | falcon_wrap.py > p-reads-0.fa

bestn : 72
group_id : 0
num_chunk : 16
min_cov : 8
max_cov : 64
trim_align : 50
trim_plr : 50

It is designed to use with the m4 alignment information generated by blasr + HBAR_WF2.py (https://github.com/PacificBiosciences/HBAR-DTK)

Example for generating overlap data:

falcon_overlap.py --min_len 4000 --n_core 24 --d_core 3 preads.fa > preads.ovlp

Example for generating assembly

falcon_asm.py preads.ovlp preads.fa

The following files will be generated by falcon_asm.py in the same directory:

full_string_graph.adj # the adjecent nodes of the edges in the full string graph
string_graph.gexf # the gexf file of the string graph for graph visulization
string_graph.adj # the adjecent nodes of the edges in the string graph after transitive reduction
edges_list # full edge list
paths # path for the unitigs
unit_edges.dat # path and sequence of the untigs
uni_graph.gexf # unitig graph in gexf format
unitgs.fa # fasta files of the unitigs
all_tigs_paths # paths for all final contigs (= primary contigs + associated contigs)
all_tigs.fa # fasta file for all contigs
primary_tigs_paths # paths for all primary contigs
primary_tigs.fa # fasta file fot the primary contigs
asm_graph.gexf # the assembly graph where the edges are the contigs

Although I have tested this tool kit to genome up to 150Mb and get reasonable
good assembly results, this tool kit is still highly experimental and is not
meant to be used by novice people. If you like to try it out, you will very
likely to know more detail about it and be able to tweak the code to adapt it
to your computation cluster. I will hope that I can provide more details and
clean the code up a little in the future so it can be useful for more people.

The principle of the layout algorithm is also available at
https://speakerdeck.com/jchin/string-graph-assembly-for-diploid-genomes-with-long-reads

ABOUT THE LICENSE

Major part of the coding work is done with my own time and on my own MacBook(R)
Air. However, as a PacBio(R) employee, most of the testing are done with the data
generated by PacBio and PacBio's computational resources, so it is fair the
code is released with PacBio's version of open source licence. If you are from
a competitor and try to take advantage of any open source code from PacBio, the
only thing you can really justify such practice is to release your real data in
public and your code as open source too.

Also, releasing this code to public is fully my own discretion. If my employer
has any concern about this, I might have to pull it off.

Standard PacBio Open Source License that is associated with this package:

###$$
Copyright (c) 2011-2014, Pacific Biosciences of California, Inc.
#
All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted (subject to the limitations in the
disclaimer below) provided that the following conditions are met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
#
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
#
* Neither the name of Pacific Biosciences nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
#
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE
GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY PACIFIC
BIOSCIENCES AND ITS CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL PACIFIC BIOSCIENCES OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
###$$

--Jason Chin, Dec 16, 2013

Running an Amazon EC2 instance that has HBAR-DTK + Falcon pre-installed

	Install the latest verison of StarCluster

 git clone https://github.com/jtriley/StarCluster.git
 cd StarCluster
 python setup.py install #better in virtualenv

The stable version of StarCluster does not support the c3 instance. For
assembly, using one node of c3.8xlarge instance is more convenient. In my
test, I can finish single E. coli genome within almost one hour. Namely, one can
assembly a bacteria genome in less then 5 bucks.

	Use the StarCluster.cfg as the configuration file for StarCluster to
setup a falcon cluster

	Start the cluster

 starcluster start falcon

	login to the cluster

 starcluster sshmaster falcon

	set up the SGE

 cd /home/sge_setup
 bash sge_setup.sh

	There is alreay an existing assembly results in /home/Ecoli_ASM/. Here I
show how to reproduce it. First, create a new assembly working directory in
/mnt, set it up and run HBAR_WF3.py to get preassembled reads

 cd /mnt
 mkdir test_asm
 cd test_asm
 cp /home/Ecoli_ASM/HBAR.cfg .
 cp /home/Ecoli_ASM/input.fofn .
 source /home/HBAR_ENV/bin/activate
 HBAR_WF3.py HBAR.cfg

	The next part of the assembly does not start automatically yet. The detail
steps are in the run_asm.sh script and one can use to get contigs and
consensus.

 cp /home/Ecoli_ASM/run_asm.sh .
 bash run_asm.sh

The consensus result is in /mnt/consensus.fasta. Since we did not do any
consensus after the unitig step. One more run of quiver consensus may further
improve the final assembly accuracy.

	A yeast (S. cerevisiae W303) data set is also included in the AMI. One can try
to assemble it with a larger cluster setting.

	Here is the result of a timing test:

 (HBAR_ENV)root@master:/mnt/test_asm# time HBAR_WF3.py HBAR.cfg

 Your job 1 ("mapping_task_q00002_t000011416727c") has been submitted
 Your job 2 ("qf_task_q00002a3e75f4c") has been submitted
 Your job 3 ("mapping_task_q00003_t00001b667b504") has been submitted
 Your job 4 ("qf_task_q000036974ef22") has been submitted
 Your job 5 ("mapping_task_q00001_t000017bf52d9c") has been submitted
 Your job 6 ("qf_task_q000010b31d960") has been submitted
 Your job 7 ("pa_task_000001ee38aee") has been submitted

 real 26m51.030s
 user 1m10.152s
 sys 0m11.993s

 (HBAR_ENV)root@master:/mnt/test_asm# time bash run_asm.sh
 [WARNING] This .cmp.h5 file lacks some of the QV data tracks that are required for optimal performance of the Quiver algorithm. For optimal results use the ResequencingQVs workflow in SMRTPortal with bas.h5 files from an instrument using software version 1.3.1 or later.

 real 13m2.945s
 user 244m44.322s
 sys 2m7.032s

For better results, one might run quiver twice. It is possible to get the whole assembly within one hour (~ 26 + 13 * 2 = 52 minutes). With the overhead on setting up, file transfer, etc., one can assembly a bacteria genome in EC2 less than 5 bucks in principle.

--
Jason Chin, 01/18/2014

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

